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Overview

Toric varieties have provided a
remarkably fertile testing ground for
general theories. Fulton.
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Resolution of Singularities

Main goal

Given a variety X , find a variety X ′ and a projective morphism f : X ′ → X such that
X ′ is smooth and f is birational.

Hironaka (1964) proved constructively
that resolutions always exists in
charcteristic zero. Positive
characteristic is much more subtle.
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Resolution of Singularities

Tool I: blowups

Basic operation on X : blowup along a smooth subvariety Y .

Critical Example

Whitney’s umbrella. V (x2 − y2z) ⊆ Spec(k[x , y , z ]).

Blowing up the origin results in an
isomorphic copy of the umbrella in one
of the charts.

Wrong strategy

Just keep blowing singular points does not always work.
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Tool II: Normalization

Normalization X of X .

Curves are resolved by normalization.

A normal surface can be resolved by repeatedly blowing up a singular point and
immediatly normalizing.
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Hironaka’s theorem

Resolution of Singularities in char 0

In 1964 Hironaka proved that varieties over a field of characteristic zero can be
resolved by finite blowups of smooth subvarieties.

Algorithm

The proof is algorithmic. At each step one can perfom a blowup that makes the variety
less singular.

The dream is to eliminate choices.
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We can analyze their singularities one cone at the time Orbit-Cone dictionary.

We can choose any of the orange points to subdivide. Not necessarily blowups of
subvarieties.
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Toric Varieties

Toric blowups

Figure: Smooth subdivision of the previous cone.
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Nash blowup

Main motivation

Have a canonical operation, no choices involved.
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Nash blowups

Definitions

Gauss map

Φ: X \ Sing(X ) → Grass(d , n) defined by x 7→ TxX ,

X ∗ the closure of the graph of Φ

and ν : X ∗ → X morphism induced by projection.

Nash blowup

The pair (X ∗, ν) is called the Nash blowup of X . The pair (X ∗, η ◦ ν) is called the
normalized Nash blowup of X .

Examples

The curve y2 − x3 in characteristic 3 is isomorphic to its Nash blowup.
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Nash blowups

First properties

These are nontrivial operations.

Nobile 74

In characteristic zero the Nash blowup of X is isomorphic to X if and only if X is
smooth.

Duarte-Nunez 22

If X is normal, then the Nash blowup of X is isomorphic to X if and only if X is
smooth.
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First results

Spivakovsky 90

Iterated normalized Nash blowups eventually resolve singularities for complex surfaces.

Natural question

Is the same true for arbitrary dimensions?

Spoiler Alert

No.
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Main ingredient

Hilbert Basis

The Hilbert basis of a (rational) cone is the minimal set of generators of the
semigroup formed by the lattice points in the cone.

The cone κ generated by (2, 1), (1, 3)
induces a semigroup κ ∩ Z2. The
minimal (or irreducible elements are
highlited).
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Toric Nash blowup

Following the work of Gonzalez-Teissier, Gonzalez Springer, and Duarte-Jeffreis-Nunez,
we have the following description.

Recipe for characteristic 0

The normalized Nash blowup of a 2-cone σ can be constructed as follows:

1 Find σ∨.

2 Compute the Hilbert Basis of it.

3 Add all pairs of linearly independent elements of the Hilbert Basis to obtain S .

4 Consider the polyhedron S + σ∨.

5 Its normal fan subdivides σ.

The toric variety of the last fan is the Nash blowup of σ.
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Toric Nash blowups

Extended Example

Consider the cone σ.

Figure: A two dimensional cone.
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Toric Nash blowups

Extended Example

We compute its dual cone σ∨. This is a basic operation (for example we can use
SageMath).

Figure: Dual to the left.
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Toric Nash blowups

Extended Example

We find its Hilbert Basis (using software like normaliz).

Figure: Hilbert basis
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Toric Nash blowups

Extended Example

We add lin. ind. pairs and add the dual cone to obtain a polyhedron.

Figure: Auxilliary polyhedron.



Toric Nash Blowups

Toric Nash blowups

Extended Example

Figure: Auxilliary polyhedron.



Toric Nash Blowups

Toric Nash blowups

Revisiting recipe

It turns out that the recipe extends to positive characteristic.

Recipe char free

The normalized Nash blowup of a 2-cone σ can be constructed as follows:

1 Find σ∨.

2 Compute the Hilbert Basis of it.

3 Add all pairs of linearly independent elements of the Hilbert Basis to obtain S .

4 Consider the polyhedron P = S + σ∨.

5 Its normal fan subdivides σ.

Everything is computable.

We can work only with the dual.

The third part can be checked with a determinant.
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Toric Nash blowups

Directed graph

We put a directed edge between a cone σ and τ if τ is isomorphic to one of the cones
resulting in the Nash blowup of σ.

Figure: A cone and its three children.
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Toric Nash blowups

Conjecture

The Nash-Semple conjecture in this terminology is:

Conjecture

Every directed path the graph ends up in the (unique up to isomorphism) smooth cone.
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Computations

The computation of toric Nash blowups was already considered by
Atanasov-Lopez-Perry-Proudfoot-Thaddeus in 09.

Test case

Reeves cones. Cones generated by columns of the following matrix

R(3, n)

1 0 0 1
0 1 0 1
0 0 1 n

 .

In dimension 3 we have tested the first 200 cases and they always get resolved by
iterated normalized Nash blowups.For now we believe that in dimension 3 the
normalized Nash blowups resolves toric singularities.
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Computational results

Dimension 4

Counterexample

The cone R(4, 5) does not gets resolved in char 0 as it enters a loop.

Counter in char ̸= 2, 3

The cone generated by the columns of
1 0 0 0 2 1
0 1 0 0 3 3
0 0 1 0 −2 −1
0 0 0 1 −1 −1

 ,

is isomorphic to one of the cones resulting in its normalized Nash blowup. In fact, the
same is true with Nash blowup (w/o normalizing).
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Positive characteristic

Counterexample

The cone R(4, 5) does not gets resolved in char 2,3 either.

The loops found here are different from the above.
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Future

In characteristic zero we have found

in dimension 4 a unique loop and it has size 1.

in dimension 5 10 different loops.

Nash-Semple revisited

Normalized Nash blowups resolve singularities in dimension 3.
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Computational results

The End
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