TORIC NASH BLOWUPS COUNTEREXAMPLE TO NASH-SEMPLE CONJECTURE

Federico Castillo

PUC

March 14, 2025

OVERVIEW

- **1** Resolution of Singularities
- **2** Toric Varieties
- **3** NASH BLOWUPS
- **4** Toric Nash blowups
- **5** Computational results

OVERVIEW

Toric varieties have provided a remarkably fertile testing ground for general theories. Fulton.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

RESOLUTION OF SINGULARITIES

MAIN GOAL

Given a variety X, find a variety X' and a projective morphism $f : X' \to X$ such that X' is **smooth** and f is **birational**.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Resolution of Singularities

MAIN GOAL

Given a variety X, find a variety X' and a projective morphism $f : X' \to X$ such that X' is **smooth** and f is **birational**.

Hironaka (1964) proved constructively that resolutions always exists in charcteristic zero. Positive characteristic is much more subtle.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

TOOL I: BLOWUPS

Basic operation on X: blowup along a smooth subvariety Y.

TOOL I: BLOWUPS

Basic operation on X: blowup along a smooth subvariety Y.

CRITICAL EXAMPLE

Whitney's umbrella. $V(x^2 - y^2 z) \subseteq \text{Spec}(k[x, y, z]).$

Blowing up the origin results in an isomorphic copy of the umbrella in one of the charts.

TOOL I: BLOWUPS

Basic operation on X: blowup along a smooth subvariety Y.

CRITICAL EXAMPLE

Whitney's umbrella. $V(x^2 - y^2 z) \subseteq \text{Spec}(k[x, y, z]).$

Blowing up the origin results in an isomorphic copy of the umbrella in one of the charts.

WRONG STRATEGY

Just keep blowing singular points does not always work.

Resolution of Singularities

TOOL II: NORMALIZATION

Normalization \overline{X} of X.

Resolution of Singularities

TOOL II: NORMALIZATION

Normalization \overline{X} of X.

• Curves are resolved by normalization.

TOOL II: NORMALIZATION

Normalization \overline{X} of X.

- Curves are resolved by normalization.
- A normal surface can be resolved by repeatedly blowing up a singular point and immediatly normalizing.

HIRONAKA'S THEOREM

Resolution of Singularities in char 0

In 1964 Hironaka proved that varieties over a field of characteristic zero can be resolved by finite blowups of smooth subvarieties.

HIRONAKA'S THEOREM

Resolution of Singularities in char 0

In 1964 Hironaka proved that varieties over a field of characteristic zero can be resolved by finite blowups of smooth subvarieties.

Algorithm

The proof is algorithmic. At each step one can perfom a blowup that makes the variety *less singular*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

HIRONAKA'S THEOREM

Resolution of Singularities in char 0

In 1964 Hironaka proved that varieties over a field of characteristic zero can be resolved by finite blowups of smooth subvarieties.

Algorithm

The proof is algorithmic. At each step one can perfom a blowup that makes the variety *less singular*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

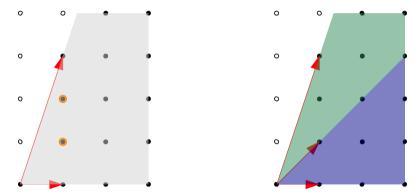
The dream is to eliminate choices.

TORIC VARIETIES

We can analyze their singularities one cone at the time Orbit-Cone dictionary.

TORIC VARIETIES

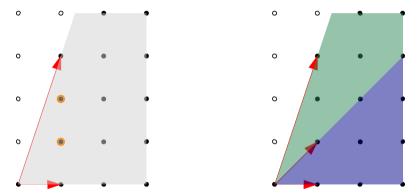
We can analyze their singularities one cone at the time Orbit-Cone dictionary.



We can **choose** any of the orange points to subdivide.

TORIC VARIETIES

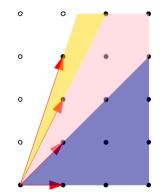
We can analyze their singularities one cone at the time Orbit-Cone dictionary.



We can **choose** any of the orange points to subdivide. Not necessarily blowups of subvarieties.

TORIC NASH BLOWUPS

TORIC BLOWUPS



 $\ensuremath{\mathbf{Figure:}}$ Smooth subdivision of the previous cone.

NASH BLOWUP

MAIN MOTIVATION

Have a canonical operation, no choices involved.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Gauss map

$$\Phi \colon X \setminus \operatorname{Sing}(X) \to \operatorname{Grass}(d, n) \quad \text{defined by} \quad x \mapsto \mathcal{T}_x X \,,$$

 X^* the closure of the graph of Φ

Gauss map

$$\Phi \colon X \setminus \operatorname{Sing}(X) \to \operatorname{Grass}(d, n) \quad \text{defined by} \quad x \mapsto T_x X$$
,

 X^* the closure of the graph of Φ and $\nu \colon X^* \to X$ morphism induced by projection.

GAUSS MAP

$$\Phi \colon X \setminus \operatorname{Sing}(X) \to \operatorname{Grass}(d, n) \quad \text{defined by} \quad x \mapsto T_x X \,,$$

 X^* the closure of the graph of Φ and $\nu \colon X^* \to X$ morphism induced by projection.

NASH BLOWUP

The pair (X^*, ν) is called the *Nash blowup* of *X*. The pair $(\overline{X^*}, \eta \circ \nu)$ is called the *normalized Nash blowup* of *X*.

・ロト・日本・日本・日本・日本・日本・○○への

Gauss map

$$\Phi \colon X \setminus \operatorname{Sing}(X) \to \operatorname{Grass}(d, n) \quad \text{defined by} \quad x \mapsto T_x X \,,$$

 X^* the closure of the graph of Φ and $\nu \colon X^* \to X$ morphism induced by projection.

NASH BLOWUP

The pair (X^*, ν) is called the *Nash blowup* of X. The pair $(\overline{X^*}, \eta \circ \nu)$ is called the *normalized Nash blowup* of X.

EXAMPLES

The curve $y^2 - x^3$ in characteristic 3 is isomorphic to its Nash blowup.

FIRST PROPERTIES

These are nontrivial operations.

Nobile 74

In characteristic zero the Nash blowup of X is isomorphic to X if and only if X is smooth.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

FIRST PROPERTIES

These are nontrivial operations.

NOBILE 74

In characteristic zero the Nash blowup of X is isomorphic to X if and only if X is smooth.

DUARTE-NUNEZ 22

If X is normal, then the Nash blowup of X is isomorphic to X if and only if X is smooth.

FIRST RESULTS

Spivakovsky 90

Iterated normalized Nash blowups eventually resolve singularities for complex surfaces.

FIRST RESULTS

Spivakovsky 90

Iterated normalized Nash blowups eventually resolve singularities for complex surfaces.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

NATURAL QUESTION

Is the same true for arbitrary dimensions?

FIRST RESULTS

Spivakovsky 90

Iterated normalized Nash blowups eventually resolve singularities for complex surfaces.

NATURAL QUESTION

Is the same true for arbitrary dimensions?

Spoiler Alert

No.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

MAIN INGREDIENT

HILBERT BASIS

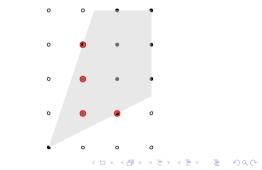
The Hilbert basis of a (rational) cone is the **minimal** set of generators of the semigroup formed by the lattice points in the cone.

MAIN INGREDIENT

HILBERT BASIS

The Hilbert basis of a (rational) cone is the **minimal** set of generators of the semigroup formed by the lattice points in the cone.

The cone κ generated by (2, 1), (1, 3) induces a semigroup $\kappa \cap \mathbb{Z}^2$. The minimal (or **irreducible** elements are highlited).



TORIC NASH BLOWUP

Following the work of Gonzalez-Teissier, Gonzalez Springer, and Duarte-Jeffreis-Nunez, we have the following description.

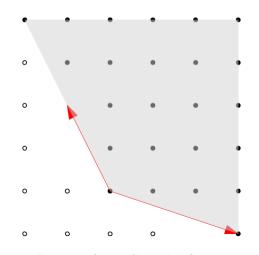
RECIPE FOR CHARACTERISTIC 0

The **normalized** Nash blowup of a 2-cone σ can be constructed as follows:

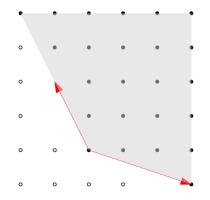
- **1** Find σ^{\vee} .
- 2 Compute the Hilbert Basis of it.
- **B** Add all pairs of linearly independent elements of the Hilbert Basis to obtain S.
- **4** Consider the polyhedron $S + \sigma^{\vee}$.
- 5 Its normal fan subdivides σ .

The toric variety of the last fan is the Nash blowup of σ .

Consider the cone σ .



We compute its dual cone σ^{\vee} . This is a basic operation (for example we can use SageMath).



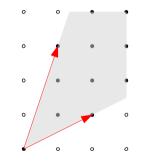
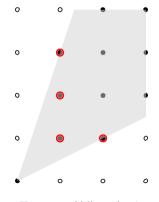


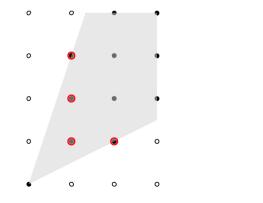
FIGURE: Dual to the left.

We find its Hilbert Basis (using software like normaliz).



 $\label{eq:FIGURE: Hilbert basis} FIGURE: \ Hilbert \ basis$

We add lin. ind. pairs and add the dual cone to obtain a polyhedron.



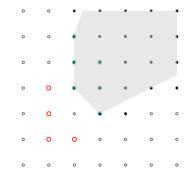
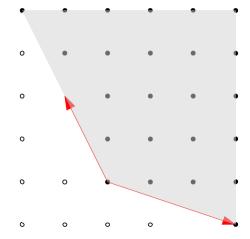
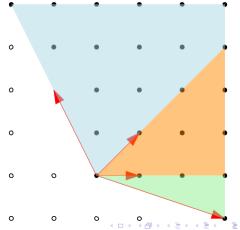


FIGURE: Auxilliary polyhedron.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○





It turns out that the recipe extends to positive characteristic.

RECIPE CHAR FREE

The **normalized** Nash blowup of a 2-cone σ can be constructed as follows:

- **1** Find σ^{\vee} .
- 2 Compute the Hilbert Basis of it.
- **3** Add all pairs of linearly independent elements of the Hilbert Basis to obtain S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- **4** Consider the polyhedron $P = S + \sigma^{\vee}$.
- **5** Its normal fan subdivides σ .

It turns out that the recipe extends to positive characteristic.

RECIPE CHAR FREE

The **normalized** Nash blowup of a 2-cone σ can be constructed as follows:

- **1** Find σ^{\vee} .
- 2 Compute the Hilbert Basis of it.
- **3** Add all pairs of linearly independent elements of the Hilbert Basis to obtain S.
- **4** Consider the polyhedron $P = S + \sigma^{\vee}$.
- **5** Its normal fan subdivides σ .
- Everything is computable.

It turns out that the recipe extends to positive characteristic.

RECIPE CHAR FREE

The **normalized** Nash blowup of a 2-cone σ can be constructed as follows:

- **1** Find σ^{\vee} .
- 2 Compute the Hilbert Basis of it.
- **B** Add all pairs of linearly independent elements of the Hilbert Basis to obtain S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- **4** Consider the polyhedron $P = S + \sigma^{\vee}$.
- **5** Its normal fan subdivides σ .
- Everything is computable.
- We can work only with the dual.

It turns out that the recipe extends to positive characteristic.

RECIPE CHAR FREE

The normalized Nash blowup of a 2-cone σ can be constructed as follows:

- **1** Find σ^{\vee} .
- 2 Compute the Hilbert Basis of it.
- **B** Add all pairs of linearly independent elements of the Hilbert Basis to obtain S.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- **4** Consider the polyhedron $P = S + \sigma^{\vee}$.
- **5** Its normal fan subdivides σ .
- Everything is computable.
- We can work only with the dual.
- The third part can be checked with a determinant.

DIRECTED GRAPH

We put a directed edge between a cone σ and τ if τ is **isomorphic** to one of the cones resulting in the Nash blowup of σ .

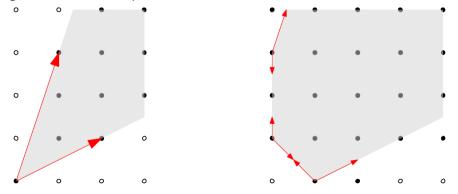


FIGURE: A cone and its three children.

Conjecture

The Nash-Semple conjecture in this terminology is:

Conjecture

Every directed path the graph ends up in the (unique up to isomorphism) smooth cone.

The computation of toric Nash blowups was already considered by Atanasov-Lopez-Perry-Proudfoot-Thaddeus in 09.

The computation of toric Nash blowups was already considered by Atanasov-Lopez-Perry-Proudfoot-Thaddeus in 09.

Test case

Reeves cones. Cones generated by columns of the following matrix

$$R(3,n) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & n \end{bmatrix}.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The computation of toric Nash blowups was already considered by Atanasov-Lopez-Perry-Proudfoot-Thaddeus in 09.

Test case

Reeves cones. Cones generated by columns of the following matrix

$$R(3,n) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & n \end{bmatrix}.$$

In dimension 3 we have tested the first 200 cases and they always get resolved by iterated normalized Nash blowups.

The computation of toric Nash blowups was already considered by Atanasov-Lopez-Perry-Proudfoot-Thaddeus in 09.

Test case

Reeves cones. Cones generated by columns of the following matrix

$$R(3,n) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & n \end{bmatrix}.$$

In dimension 3 we have tested the first 200 cases and they always get resolved by iterated normalized Nash blowups.For now we believe that in dimension 3 the normalized Nash blowups resolves toric singularities.

DIMENSION 4

Counterexample

The cone R(4,5) does **not** gets resolved in char 0 as it enters a loop.

DIMENSION 4

Counterexample

The cone R(4,5) does **not** gets resolved in char 0 as it enters a loop.

Counter in char $\neq 2,3$

The cone generated by the columns of

is isomorphic to one of the cones resulting in its normalized Nash blowup. In fact, the same is true with Nash blowup (w/o normalizing).

Positive characteristic

Counterexample

The cone R(4,5) does **not** gets resolved in char 2,3 either.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Positive characteristic

Counterexample

The cone R(4,5) does **not** gets resolved in char 2,3 either.

The loops found here are different from the above.

FUTURE

In characteristic zero we have found

• in dimension 4 a unique loop and it has size 1.

• in dimension 5 10 different loops.

FUTURE

In characteristic zero we have found

- in dimension 4 a unique loop and it has size 1.
- in dimension 5 10 different loops.

NASH-SEMPLE REVISITED

Normalized Nash blowups resolve singularities in dimension 3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Computational results

The End